Answers

  • 0
  • 0

Global graphene market trend 2023-2027 How amazing is graphene? by Newsexpost-news

How serious are fertility problems today? People don't want to give birth,can't afford it, and can't give birth that has become the "three mountains".
The problem of childbirth is related to the people's livelihood. Whether a country can prosper or not depends on the population. I saw a set of data a few days ago. The data shows that on January 1, 1990, 2,784 babies were born in Shanghai. Ten years later, on January 1, 2000, 1,148 babies were born in Shanghai. In 2010, the number became 380. , 2020 only 156 people, the decline in the birth rate is shocking. The three most critical reasons are: I don't want to give birth, I can't afford it, I can't give birth! The decline of the global population will bring a series of economic and social problems, among which the demand for graphene will also be affected.

What is graphene
Graphene is a new material made up of a single layer of carbon atoms packed tightly together to form a hexagonal honeycomb lattice. In other words, it is a two-dimensional carbon material, an allotrope of the element carbon. 



Graphene has only 0.142 nanometers of molecular bonds and 0.335 nanometers of crystal plane spacing. It's much shorter than a bacterium, about four atoms in size. 
So far, graphene is the thinnest compound ever found. It is only one atom thick. It is also the lightest material and the best conductor of electricity in the world. 
 

Humans and graphene 
Graphene has been found in nature since 1948. But at the time, it was very difficult to separate graphene from the monolayer structure, because the graphene was all clumped together, and it was like graphite, and every millimeter of graphite contained about three million layers of graphene. 
So for a long time, graphene was thought to be nonexistent. 
It wasn't until 2004 that scientists Andrei Geim and Konstantin Voselov from the University of Manchester in the United Kingdom found a way to isolate graphene. They found that if graphite sheets were peeled from highly-oriented pyrolytic graphite, they could be successfully separated by attaching the two sides of the sheets to a special tape and tearing the tape apart.
By doing this over and over again, you can make the sheets thinner and thinner, and you end up with a special sheet of carbon atoms, which is graphene. Andrei Geim and Konstantin Novoselov won the Nobel Prize for discovering graphene. 
 

The king of materials -- graphene 
When graphene was discovered, it completely changed the landscape of scientific research around the world. Because graphene turns out to be the thinnest material in the world, one gram of graphene is enough to cover a standard football pitch. 
In addition, graphene has excellent thermal and electrical properties. Pure, defection-free monolayer graphene has a high thermal conductivity of 5300W/ Mk, the highest thermal conductivity of any carbon material known to mankind. 
In addition, graphene conducts electricity very well. Graphene has a carrier mobility of 15,000m2/(Vs) at room temperature, which is more than 10 times that of silicon, the most commonly used material. 
Inside graphene, carbon atoms are arranged like barbed wire. This arrangement of atoms gives graphene its unique flexibility, making it harder than ever. In addition to the barbed wire and honeycomb structure formed by carbon atoms, each carbon atom is perpendicular to the orbital of the layer, resulting in the formation of large bonds that can penetrate atoms, which also gives graphene excellent thermal and electrical properties. 
 

Graphene applications
The discovery of graphene has not only opened the eyes of science to the possibility of the movement and action of various particles, but also changed our lives in many aspects.
 
New energy batteries are the first foothold for graphene technology. At present, the commonly used battery is the lithium battery. Although the lithium battery is enough to store a large amount of electric energy for our use, the disadvantage of lithium battery is that its wear is too serious, and each use of discharge and charging will make the life of lithium battery shorter. 
The application of graphene material greatly improves the capacity and charging efficiency of batteries, and it also plays an important role in improving battery life. If the graphene tin oxide layer is used as the anode of a lithium battery, the battery will last longer after being charged, and the battery will be used and recharged with very little loss. 
In summary, graphene can make batteries last longer and have higher capacity. 





In addition to batteries, graphene could also be used to make flexible materials because of its softness. One of the most representative is the flexible display. 
The South Korean institute has successfully produced flexible transparent displays using layers of graphene and fiberglass polyester sheets. Although the project is still under development and has not been put into actual production or market, according to the imagination of the project staff, perhaps one day, mobile phones equipped with flexible displays made of graphene will completely change the impression of "bricks" of mobile phones. Phones can be folded like silly putty. 
 
Graphene is also being used to protect the environment, most notably in desalination
Water interacts with the graphene to create a channel of just 0.9 nanometers across.  Molecules smaller than that can easily pass through the channel, while those larger get stuck. So, using graphene, you can remove the larger molecules of salt from seawater, so that the desalination of seawater can be successfully achieved. 
 
Because of its excellent properties and unique properties, graphene has made a lot of achievements in many scientific fields. 
 
Luoyang Tongrun Nano Technology Co. Ltd. (TRUNNANO) is a trusted global chemical material supplier & manufacturer with over 12-year-experience in providing super high-quality chemicals and Nanomaterials, including silicon powder, nitride powder, graphite powder, zinc sulfide, calcium nitride, 3D printing powder, etc.
If you are looking for high-quality graphene, please feel free to contact us and send an inquiry. ([email protected])

 

Researchers at the University of Warwick in the UK have developed a lithium battery technology innovation. Adding graphene beams doubles battery life. By strengthening the structure of the anode with graphene beams, they have found an effective way to replace the graphite in the anode with silicon. Thereby increasing the capacity of the lithium-ion battery and more than doubling the lifespan.
As a supplier of anode materials for lithium batteries, we also provide graphene. We will continue to provide graphene for the global market, please feel free to contact us.


.

Inquery us

Our Latest Answers

Global Cuprous Oxide Cu2O,Overview of Cuprous Oxide Cu2O, Application of cuprous oxide Cu2O powder,Cuprous oxide Cu2O powder price,Cuprous oxide Cu2O powder supplier market trend 2024-2030 What are copper and cuprous oxide? by Newsexpost-news

Cuprous oxide is a bright red powder, almost insoluble in water, decomposed into divalent copper and copper in acidic solution, and gradually oxidized into black copper oxide in humid air. Commonly used as a pigment, biocide and antifouling agent in…

Global amorphous boron market trend 2025-2028 Is boron amorphous or crystalline? by Newsexpost-news

Is boron amorphous or crystalline?Boron can be prepared in several crystalline and amorphous forms. The well-known forms of crystallization are α-rhombohedral (α-R), β-rhombohedral (β-R) and β-tetragonal (β-T). In spec…

Global copper oxide market trend 2024-2028 What does copper oxide do? by Newsexpost-news

What is copper oxide?Copper oxide is an inorganic substance. Copper oxide chemical formula is CuO. It is a black oxide of copper. Slightly bisexual and slightly hygroscopic. Insoluble in water and ethanol, easily soluble in acid, thermally stable, de…